Molecular mechanisms of corticosteroid synergy with thyroid hormone during tadpole metamorphosis.
نویسندگان
چکیده
Corticosteroids (CS) act synergistically with thyroid hormone (TH) to accelerate amphibian metamorphosis. Earlier studies showed that CS increase nuclear 3,5,3'-triiodothyronine (T(3)) binding capacity in tadpole tail, and 5' deiodinase activity in tadpole tissues, increasing the generation of T(3) from thyroxine (T(4)). In the present study we investigated CS synergy with TH by analyzing expression of key genes involved in TH and CS signaling using tadpole tail explant cultures, prometamorphic tadpoles, and frog tissue culture cells (XTC-2 and XLT-15). Treatment of tail explants with T(3) at 100 nM, but not at 10 nM caused tail regression. Corticosterone (CORT) at three doses (100, 500 and 3400 nM) had no effect or increased tail size. T(3) at 10 nM plus CORT caused tails to regress similar to 100 nM T(3). Thyroid hormone receptor beta (TRbeta) mRNA was synergistically upregulated by T(3) plus CORT in tail explants, tail and brain in vivo, and tissue culture cells. The activating 5' deiodinase type 2 (D2) mRNA was induced by T(3) and CORT in tail explants and tail in vivo. Thyroid hormone increased expression of glucocorticoid (GR) and mineralocorticoid receptor (MR) mRNAs. Our findings support that the synergistic actions of TH and CS in metamorphosis occur at the level of expression of genes for TRbeta and D2, enhancing tissue sensitivity to TH. Concurrently, TH enhances tissue sensitivity to CS by upregulating GR and MR. Environmental stressors can modulate the timing of tadpole metamorphosis in part by CS enhancing the response of tadpole tissues to the actions of TH.
منابع مشابه
Corticosteroid signaling in frog metamorphosis.
Stress in fetal and larval life can impact later health and fitness in humans and wildlife. Long-term effects of early life stress are mediated by altered stress physiology induced during the process of relaying environmental effects on development. Amphibian metamorphosis has been an important model system to study the role of hormones in development in an environmental context. Thyroid hormon...
متن کاملDevelopmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in Xenopus laevis.
Corticosteroids, the primary circulating vertebrate stress hormones, are known to potentiate the actions of thyroid hormone in amphibian metamorphosis. Environmental modulation of the production of stress hormones may be one way that tadpoles respond to variation in their larval habitat, and thus control the timing of metamorphosis. Thyroid hormone and corticosteroids act through structurally s...
متن کاملCrossregulation of the Thyroid Hormone and Corticosteroids in Amphibians and Fish: The Effects of Endocrine Disruption
Thyroid hormones are involved in many physiological processes, during growth, develop‐ ment, behaviour, stress. Their actions are mediated by TH receptors (TR-alpha and TR-beta), which are members of the nuclear receptor (NR) superfamily and function as ligand-activat‐ ed transcription factors. In amphibians, TR-alpha is expressed shortly after hatching and is maintained at a relatively constan...
متن کاملMolecular cloning of hepatic mRNAs in Rana catesbeiana responsive to thyroid hormone during induced and spontaneous metamorphosis.
Amphibian metamorphosis affords a useful experimental system in which to study thyroid hormone regulation of gene expression during postembryonic vertebrate development. In order to isolate gene-specific cDNA probes which correspond to thyroid hormone-responsive mRNAs, we employed differential colony hybridization of a cDNA library constructed from poly(A)+ RNA of thyroxine-treated premetamorph...
متن کاملThe molecular basis of thyroid hormone-dependent central nervous system remodeling during amphibian metamorphosis.
Tadpole metamorphosis involves a coordinated series of changes in virtually every tissue of the body. This developmental process is induced by the single morphogen, thyroid hormone (TH). The amphibian central nervous system (CNS) is a primary target for TH, and it undergoes dramatic morphological and cytoarchitectural changes in response to the hormone. TH acts by regulating gene expression and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- General and comparative endocrinology
دوره 168 2 شماره
صفحات -
تاریخ انتشار 2010